Ensemble techniques for parallel genetic programming based classifiers

Abstract

An extension of Cellular Genetic Programming for data classification to induce an ensemble of predictors is presented. Each classifier is trained on a different subset of the overall data, then they are combined to classify new tuples by applying a simple majority voting algorithm, like bagging. Preliminary results on a large data set show that the ensemble of classifiers trained on a sample of the data obtains higher accuracy than a single classifier that uses the entire data set at a much lower computational cost. © Springer-Verlag Berlin Heidelberg 2003.

Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Add the full text or supplementary notes for the publication here using Markdown formatting.