In this paper we present a performance model to analyse the scalability and predict the performance of cellular programs developed by the CAMELot system. CAMELot is a problem solving environment that uses the cellular automata model for modelling and simulating dynamic complex phenomena. The environment supports CARPET, a purpose-built language for programming and steering cellular applications. The performance model proposed is based on the isoefficiency method. The isoefficiency is a scalability measure that determines whether a parallel system can preserve its efficiency by increasing the problem size as the number of processors is scaled. By isoefficiency analysis we can test a program’s performance on a few processors and then predict its performance on a larger number of processors. It also lets us study system behavior when other hardware parameters, such as processor and communication speeds change. Scalability prediction examples for two-dimensional and three-dimensional cellular programs on a Meiko CS-2 parallel machine are given. © 2001 IEEE.
Add the full text or supplementary notes for the publication here using Markdown formatting.