A method for the data mining task of data classification, suitable to be implemented on massively parallel architectures, is proposed. The method combines genetic programming and simulated annealing to evolve a population of decision trees. A cellular automaton is used to realise a fine-grained parallel implementation of genetic programming through the diffusion model and the annealing schedule to decide the acceptance of a new solution. Preliminary experimental results, obtained by simulating the behaviour of the cellular automaton on a sequential machine, show significant better performances with respect to C4.5. © Springer-Verlag Berlin Heidelberg 2000.
Add the full text or supplementary notes for the publication here using Markdown formatting.